
Advanced virtualization techniques for
FAUmachine

Hans-Jörg Höxer Volkmar Sieh Martin Waitz

Institut für Informatik 3
Friedrich-Alexander-Universität Erlangen-Nürnberg

Germany

info@faumachine.org

Abstract

This paper presents advanced virtualization
techniques used to implement the virtual PC
FAUmachine. We created a just-in-time compiler
that can transform kernel mode code into code
suitable for direct execution within a user mode
simulator. This approach allows the efficient vir-
tualization of standard PC hardware. To improve
the performance of our simulator, we developed
a small host kernel modification that simplifies
system call redirection to the virtual machine.
These approaches are described in detail and
their performance is evaluated.

1 Introduction

Virtualization of hardware is a topic of great in-
terest both for the commercial and scientific sec-
tor. The main motivation for our work is to build
a virtual machine that provides a realistic hard-
ware simulator which is able to simulate hard-
ware faults. Such a fault injector can be used in
dependability benchmarks [1, 4].

Our team developed a virtual PC formerly
known as UMLinux, now called FAUmachine.
To ease virtualization, we used a specially mod-
ified Linux kernel as guest system. One of our
main targets was, that the changes needed to port
an original Linux kernel to our virtual environ-
ment should be minimal. We replaced certain
assembler instructions with calls to the virtual
PC, which simulates these instructions. This ap-
proach has proven to work very well and has
the important benefit, that the virtual machine

completely runs in user space. No special mod-
ules or extensions to the hosting Linux kernel are
needed.

Nonetheless, two major drawbacks have
shown up. First, we can not run system level bi-
naries for which we have no source code. This
includes binary-only Linux kernel modules and
operating systems like Windows. Second, we
use ptrace(2) to redirect system calls issued
by user processes running on FAUmachine to the
kernel running on FAUmachine. The introduced
overhead degrades the performance of the virtual
system significantly. To remedy these problems
we implemented a just-in-time compiler and an
extension to the hosting Linux kernel.

The just-in-time compiler which is able to au-
tomatically convert kernel mode code into user
mode code is described in section 2. The kernel
extention used to accelerate system call handling
in the virtual machine is described in section 3.
The performance of both methods is then evalu-
ated in section 4.

1.1 Terminology

When working on virtualization of hardware,
one always has to work with several systems:
host and guest. The host system is the physical
system which is used to run the virtual machine.
The guest system is provided by the virtual ma-
chine. It is not build with physical hardware, but
solely consists of virtual components. Of course,
the software responsible for these components
has to run on physical hardware (the host sys-
tem), which is not directly available to the guest.

In our example, both host and guest systems
are PC compatible computers (i386 architec-
ture).

1.2 Overview over FAUmachine

Each CPU of the guest system is simulated with
one user mode process on the host system. The
virtual memory available for these processes is
used to simulate the address space of the guest
CPU. The MMU of the guest CPU is simulated
with mmap(2) and munmap(2). However, a
normal process is only allowed to use three out of
four GBytes address space (on Linux, values for
other systems vary). Access to the last GByte is
not possible efficiently so we use modified guest
kernels that only access the lower three GByte.
A solution for this limitation is being worked on
(see section 5).

The simulator that is responsible for the vir-
tual hardware and some special CPU instruc-
tions is mapped into the address space of the vir-
tual CPU. It is responsible to simulate everything
needed by the guest system and not available in
a normal process. Signals raised by the host op-
erating system are converted into exceptions of
the guest CPU. The simulator handles the com-
munication between the guest operating system
and the virtual hardware. All the state machines
for all that virtual hardware are implemented in
the simulator.

A frontend process is responsible to provide
interaction with the host system. It is able to
display the virtual console in a GUI or terminal
window. Keystrokes and mouse movements in
those windows are transformed into events that
are sent from the virtual mouse/keyboard to the
guest operating system. The frontend and simu-
lator processes are linked with several sockets to
be able to communicate with each other.

For details on the FAUmachine hardware sim-
ulator see [3].

2 Just-in-time compiler

Virtualization is greatly simplified when host and
guest architecture match. The host CPU can be
used to directly execute the code that is to be ex-
ecuted by the virtual CPU. But this approach is
not possible when the virtual CPU tries to com-
municate with peripherals – it has to talk to vir-
tual peripherals and not to those connected to the
host CPU.

This doesn’t raise any problems as long as the
virtual CPU is in user mode in which direct ac-
cess to hardware is prohibited. The host CPU can
simply execute those code parts on behalf of the
virtual CPU.

If the virtual CPU switches to kernel mode,
things get more complicated. The host CPU
could also enter kernel mode to be able to exe-
cute those instructions [5]. However, the security
of the host system can easily be compromised if
the privileged code is not monitored carefully.

In order to execute virtual kernel mode code in
a user process of the host machine, some modi-
fications to the code are necessary. These mod-
ifications can be made at run time or at compile
time.

Previous versions of FAUmachine used spe-
cially crafted guest kernels to be able to run in-
side the simulator. There are several problems
with this approach. To be able to modify the
guest operating system, it has to be modified in
source code. But it is not always possible to ob-
tain the source code of the operating system in
question. Even if the source code is available,
those modifications have to be repeated for every
new version of the operating system.

In order to overcome these problems, code has
to be converted automatically while running it.
This section describes how this is done in the cur-
rent version of FAUmachine.

2.1 Differences between kernel
and user mode

Multitasking is a very important feature for to-
days computers. In order to be able to reliably
run different processes in parallel, there has to
be some program that arbitrates between all run-
ning processes. This special program is called
the operating system kernel and is given special
privileges by the CPU.

The CPU distinguishes between user and ker-
nel mode. In kernel (privileged) mode, a pro-
gram has complete control over the machine.
It can access all the memory and all hardware
resources. Processors have two very distinct
modes: Kernel and user mode.

In user mode, only a subset of the functional-
ity is available. All operations that are possibly
harmful are not allowed by the CPU.

The operating system provides system calls
that are used to provide a pre-defined set of safe
operations that are executed on behalf of the user

process. When a system call is invoked, the pro-
cessor will enter kernel mode and the operating
system kernel is responsible for execution of this
call.

We want to build a complete virtual CPU, in-
cluding user and kernel mode. Yet the simulator
is only allowed to run in user mode of the host
CPU, like any other application. That way it is
not possible for the virtual system to compromise
the host operating system, but we have to find a
way to create a fake kernel mode. The approach
taken is described below.

2.2 Running user-mode code in a
virtual machine

As the simulator runs in user mode itself, it is
capable of running user mode code of the guest
system directly. No special handling is necessary
as the code in the guest system is not allowed to
directly access hardware, anyway.

Leaving this virtual user mode has to be de-
tected reliably. When an exception or system call
occurs, control is given to the operating system.
The simulator has to ensure that the guest op-
erating system is used to handle that exception
instead of the host operating system.

As normal user-space process, it is not possi-
ble for the simulator to inhibit the invocation of
the host operating system. But it is possible for
the simulator to be notified about these events.
Exceptions are normally passed to the responsi-
ble process as a Unix signal. The simulator reg-
isters signal handlers for all possible exceptions
(SIGSEGV, SIGILL, SIGFPE, ...) and simulates
that exception in the guest CPU. Normally, only
system calls are not converted into a signal so
that other methods have to be used to catch those.
System call handling is described in detail in sec-
tion 3.

2.3 Simulation of individual
instructions

Simulating kernel mode code is a bit more dif-
ficult as the virtual machine is not able to exe-
cute it directly. In user mode, only a small sub-
set of the processor state is available. In order
to be able to simulate a complete processor with
kernel mode, a virtual version of the entire state
is needed. This virtual processor state has to be
stored in memory, in order to be accessible by
user mode code. This state has to include all the

CPU registers (general purpose, floating point,
flags, various control registers and so on).

When an operation is simulated, it will work
on this in-memory copy. All instructions are re-
implemented as C code that mimics the function-
ality of the real CPU. All virtual hardware (e.g.
hard disks, network and video cards) is also sim-
ulated with C code. A function of such a hard-
ware simulator will be called when the virtual
CPU tries to talk to it.

The simulated versions of the CPU instruc-
tions are much slower than the real ones. There-
fore the simulator should only be used when nec-
essary. Many instructions behave the same in
user and kernel mode and can still be executed
directly even when the virtual CPU is in kernel
mode. Only those instructions that behave dif-
ferently in user and kernel mode have to be sim-
ulated. Whenever the virtual CPU reaches code
that has to be simulated, it has to activate the sim-
ulator. Whenever it reaches code that can be ex-
ecuted directly, it should switch to direct execu-
tion of that code part.

These transitions between direct execution and
simulation are made possible by synchronizing
the real and virtual CPU state. As instructions
that are executed directly don’t use the full CPU
state, only the general purpose, flags and seg-
ment registers have to be synchronized. The reg-
isters of the real CPU are saved to the in-memory
version just before simulating an instruction and
are restored from there before starting direct ex-
ecution again. As the C code of the simulator
needs its own environment to be able to run, seg-
ment and flags registers and the stack pointer are
set to special values while the simulator is run-
ning.

2.4 Running kernel code in a
virtual machine

Most instructions that have to be simulated trig-
ger an exception in the processor when they are
executed from user mode. The simulator process
will get a signal from the host operating system
when this happens and can take appropriate ac-
tions to simulate that instruction instead.

However, this approach is slow because it re-
quires a round trip to the host operating system
and doesn’t work for all instructions. Namely
the pushf and popf instructions are problem-
atic. They are used to save and restore the flags
register, which holds information for both com-

parison results and for overall processor configu-
ration, including privilege level, interrupt enable
bit and so on. Some bits of this register are only
available in kernel mode, some are always avail-
able. Exactly this dual use poses a problem: ac-
cess to the register is always allowed, but it be-
haves differently in user and in kernel mode.

In kernel mode, the entire flags register may be
saved and restored. However, user processes can
only save and restore some bits of this register.
All other bits are simply ignored. No exception
is generated, so it is not possible to detect that an
access to the flags register failed.

Another example is iret. The set of registers
restored depends on the current privilege level.

As it is not possible to get notified about
pushf/popf/iret usage, we have to check for
it before issuing such an instruction. If every
instruction gets checked before execution any-
way, then it is possible to efficiently handle other
special cases as well. Each instruction is com-
pared against the list of instructions that have
to be simulated. Exceptions are not used to de-
tect to-be-simulated instructions. Only “real” ex-
ceptions which would also occur on a real sys-
tem have to be handled (page and segmentation
faults, divide-by-zero, etc.). Those are handled
via a normal Unix signal handler.

Checking instructions is very slow compared
to the time it takes to execute them. Several clock
cycles are needed to determine whether an in-
struction has to be simulated or executed directly.
Doing that for every instruction is prohibitive
performance-wise as all kernel code would be
slowed down extremely. Therefore, a method to
reduce these checks is needed.

2.5 Caching compiled code

The decision whether an instruction has to be
simulated or not does not depend on the current
CPU state and thus only has to be done once
for each instruction. Therefore, it is possible to
cache information about how a given piece of
code has to be run.

This is exactly the approach taken by our just-
in-time (JIT) Compiler. It transforms a piece
of arbitrary code into code that only consists
of instructions that can be issued in user mode.
This new code is a mixture of original code and
calls to our simulator. There is no performance
penalty for most instructions. Only those that
have to be simulated anyway because they access

hardware or processor flags have to go through
the extra jump into the simulator.

Using this cache of native code, even kernel
code can be efficiently executed in the virtual
machine. But the cache still has to be filled be-
fore it can be used. Instructions are added to the
cache one by one. When the virtual CPU is about
to execute an instruction that is not yet part of the
cache, it is compiled and added to the cache. Af-
terwards, the compiled version is executed and
the next instruction is looked up in the cache. If
more instructions would be fetched at once, an
exception could be generated too early, for ex-
ample when the page holding the following in-
structions is not available.

This compilation phase is rather expensive but
only has to be done once for each instruction.
Experiments have shown that our current cache
size of about four megabytes is big enough to
hold a complete Linux kernel. Once the kernel
has booted in the virtual machine, compilation of
new code is only necessary when the kernel exe-
cutes new code paths, which is very infrequent.

2.6 Managing the cache

Efficient access to the modified instructions is
crucial for the performance of the simulator.

Those modified instructions cannot be stored
in the original code segment as the simulated
process would be aware of the modifications if
it reads its own code. There are several programs
(mostly boot loaders) which use self-modifying
code or which calculate a checksum of itself so
that this approach cannot be used. The modified
code has to be stored in extra memory as part of
the simulated CPU.

If the code is not run in its original location,
there is a discrepancy between the real (called
REIP) and cached instruction pointer (called
CEIP). This is not a problem for most instruc-
tions. It only matters for ret and call in-
structions. Those read and write the current in-
struction pointer (%eip) from/to the stack. Code
that examines its own stack may break if a return
address stored there contains unexpected values.
Examples are all debuggers (they need the return
address to identify the function called) and code
that uses global variables in position independent
code. In order not to break stack contents, call
and ret instructions have to be simulated, too.
The simulator correctly maps between cached
and real addresses so that the stack always con-
tains correct values.

Another problem is that the modified code is
a little bit larger than the original code most of
the time. An one-to-one mapping of original and
modified addresses is not possible because of the
resulting displacements inside the code segment.
To address this problem, the code segment is
split into many pieces called cache lines. Each
of these cache lines consists of some unmodi-
fied code and only one modified instruction at
the end. The delta between REIP and CEIP is
always constant inside a single cache line. That
allows to easily convert one to the other. The
original address (REIP) of the first instruction in
a cache line is stored explicitly, all others are cal-
culated from that one.

As the cache gets split up into several lines, it
is important to be able to quickly find the correct
cache line. There are several situations that need
different methods to find a cache line:

• Find the cache line holding the compiled
code for a specific REIP.

• Find all cache lines that contain code from a
common page. They have to be invalidated
when the page gets modified after the code
was compiled.

• Find all cache lines that contain jumps to a
cache line. These jumps have to be adjusted
if the target cache line is invalidated.

• Find the next free cache line.

The first two situations are solved by using
hash tables. All cache lines that share the same
hash value are linked in a list. To find a cache
line, the hash value of the requested address is
calculated and the corresponding list is linearly
searched for the cache line in question.

unsigned long
cpu_jit_range_hash0(unsigned long eip)
{

return (eip / CACHE_LINE_SIZE) % RANGE_HASH_SIZE;
}
unsigned long
cpu_jit_page_hash0(unsigned long page)
{

return (page / 4096) % PAGE_HASH_SIZE;
}

The hash functions try to generate identical
values for all instructions within a cache line.
This is achieved by assigning one hash value to
an entire block of addresses. As long as a cache
line is inside such a block, it will get the same
hash value for every instruction. A cache line
can touch at most two hash value blocks as the
maximum cache line size is smaller than the hash
value block size. If the search for a cache line at

a given index is not successful, then it is assumed
that the cache line crosses a hash value boundary.
The cache line is then looked up using the hash
value of the preceding hash value block.

The other situations concerning cache line
searching involve allocation and invalidation of
cache lines. All cache lines are chained by a dou-
bly linked list. When a cache line gets allocated,
it is put to the tail of this list; if it gets invali-
dated it is moved to the head of the list. When a
new cache line is needed, it is simply taken from
the beginning of the list. That one is either free
already or contains the least recently allocated
cache line. A true least recently used strategy
would be better but would require to instrument
the code running in the cache line so that actual
usage is detected. However, with a large enough
cache size there is no need for advanced alloca-
tion strategies. Our tests have shown that a few
megabytes are enough to hold the compiled ver-
sion of a Linux kernel.

Cache lines have to be invalidated if their orig-
inal code changes or if there are no more free
cache lines. To detect changes in the original
code, pages are marked write protected when
code contained in them is being compiled. If
the content of the page is being modified, a page
fault is triggered. The simulator catches this page
fault and invalidates all corresponding cash lines,
found by the hash table mentioned above. All
jumps into such an invalidated cache line are now
dangling and have to be removed in turn. To sim-
plify the search for cache lines that contain such
a jump, there is a linked list of referencing cache
lines. This reference list is updated each time a
jump is inserted into a cache line.

2.7 Code generation

Cache lines are filled one instruction at a time.
Each cache line that is not yet complete (i.e.
the cache line only consists of unmodified code
and is shorter than the maximum length) is ter-
minated with a special jump into the simulator.
When the control flow of the virtual CPU reaches
the end of the cache line, it will hit the jump and
cause a fetch function to be called in the simula-
tor. This function evaluates the next instruction
of the original code and decides whether it can
be executed directly or whether it has to be sim-
ulated. The appropriate code is then inserted into
the cache line, replacing the jump to the fetch
function. The cache line has to be terminated
again, unless the new instruction already was an

unconditional jump. This is achieved by either
jumping to another existing cache line which can
be used as continuation or inserting a new jump
to the fetch function.

Return from compiled code to simulator is not
that straightforward:

• All register values have to be saved before
being modified.

• The current stack must not be used.

The simulator must not modify the stack of the
guest system; there may not even be a valid stack
available. Therefore, normal call instructions
cannot be used and another method is needed to
save the return address. Other registers cannot be
used as they would have to be saved in turn, too.
As the simulator has to update its in-memory
CPU state anyway, the in-memory copy of the in-
struction pointer is the natural target to store the
instruction pointer. This is achieved by insert-
ing an instruction that explicitly modifies the in-
memory copy of the instruction pointer. Control
is then transfered to the simulator which saves all
other registers and executes the requested func-
tion.

When an instruction is simulated, then a de-
coded version of that instruction is saved in the
cache line to simplify simulation. This instruc-
tion is read and executed by the simulator. Af-
terwards it restores all register values and jumps
into the cache line holding the next instruction.

If an instruction doesn’t have to be simulated,
it is compiled into the cache. This compiled form
may differ from the original instruction in some
situations.

Jumps are always specified using relative ad-
dresses in the i386 architecture. To optimize
code size, only a 8 or 16 bit offset will be used
when the jump target is near enough. However,
the compiled code does not have the same layout
and it may not be possible for the jump target to
be representable in the original instruction. This
is a problem especially with conditional jumps
which are only available using an eight bit offset.
For example, a simple je targetmay have to
be compiled as jne else; jmp target;
else: in order to reach its target.

Code is always executed in 32-bit mode. If
16-bit code is to be simulated then the JIT has
to insert or remove address and operand size pre-
fixes accordingly. With those prefixes, it is even
possible to execute BIOS code in the native 32-
bit mode of the processor.

0
100
200
300
400
500
600
700
800
900

0 20 40 60 80 100 120
cache line length

Figure 1: Distribution of cache line sizes
after booting Linux

If the length of an instruction changes because
of some modifications, then the current cache
line is finalized and new code has to go to an-
other cache line. A jump to the new cache line is
appended in this case.

As seen in figure 1, most cache lines have to be
finalized early and only contain very few instruc-
tions. Only a fraction of the cache memory can
be used for code. That is impaired by the fact that
cache lines are allocated for the target of a con-
ditional jump even if it is not taken. About one
fourth of the allocated cache lines were empty af-
ter booting a Linux kernel (not shown in figure 1
because it would dominate the graph). The JIT
already works very well but optimizations still
have to go on.

3 System call redirection

System calls issued by processes running on the
virtual machine impose a special problem that
is to be solved by FAUmachine. Both FAUma-
chine and guest processes use system calls to ex-
ecute functions of the kernel they are running on.
FAUmachine uses functions of the hosting kernel
whereas a guest process has to use functions of
the guest kernel. As the guest’s userland code is
executed by the CPU directly, system calls issued
by the guest will trigger the system call handler
of the hosting kernel.

To understand this issue we take a closer look
in the next section on how system calls can be
implemented on the i386. Section 3.2 summa-
rizes the problem and outlines two methods solv-
ing this problem.

The first method uses standard mechanisms
provided by Linux but has a noticeable perfor-
mance overhead. It is introduced in section 3.3.
The second method is based on a modified Linux
host and is discussed in section 3.4.

We conclude this chapter with a description
of how the simulator handles the redirection in
a way common to both approaches.

3.1 System calls and ABI

The i386 provides two mechanism for system
call invocation: “Call gates” and “software in-
terrupts.” Both allow to transfer control from
an unprivileged user context to a privileged sys-
tem context in a secure and controlled manner.
Which method is used and and how parameters
are passed to the system call define the so called
“Application Binary Interface” (ABI).

3.1.1 Call gates

To use call gates a gate descriptor is entered in
the “Global Descriptor Table” (GDT) or “Lo-
cal Descriptor Table” (LDT). The gate descrip-
tor references a code segment descriptor and pro-
vides an offset into this segment. This segment
can have a more privileged level than the current
one. For details see [2].

When executing a far call instruction (lcall
<selector>, <offset>) specifying this
call gate selector, the processor loads the ref-
erenced code segment and continues execution
at the defined offset. The privilege level is
set appropriately. Additionally to the instruc-
tion pointer the previous selector is saved on the
stack, so the previous context can be restored by
executing a lret instruction. For example, this
mechanism is used by Solaris/x86.

3.1.2 Software interrupts

Software interrupts are generated with the int
<number> instruction which expects an inter-
rupt number as argument. Similar to hardware
interrupts and exceptions, the system has to pro-
vide an interrupt gate descriptor in the “Interrupt
Descriptor Table” (IDT) to be able to handle a
particular software interrupt. Like a call gate
the descriptor for an interrupt gate references a
code segment selector, an offset into this segment
and the privilege level to use. When executing
an int <number> instruction, the processor
loads the corresponding code segment, sets the
privilege level and continues at the specified off-
set. The previous process context is saved on the
stack and is restored when executing the iret
instruction. To name a few, Linux and the op-
erating systems of the BSD family use the soft-

ware interrupt 128 (int $0x80) to implement
system calls. Again, for detials see [2].

3.1.3 Binary compatibility

FAUmachine is binary compatible to the i386.
Thus user space applications are run on the guest
system without any modification and are exe-
cuted by the host CPU.

As a consequence applications will issue sys-
tem calls natively as required by the ABI of the
guest kernel. For example, an application run-
ning on a Linux guest uses int $0x80 for sys-
tem call invocation. This instruction is executed
directly by the hosting CPU. If the hosting ker-
nel has installed a handler for this interrupt –
which is the case on a Linux host – the CPU traps
into the hosting kernel and executes this interrupt
handler and not the interrupt handler of the guest
kernel.

3.2 The problem and possible
solutions

We have to distinguish system calls issued by the
simulator from those issued by the guest system.
System calls of the simulator must be handled by
the host, those of guest processes must be redi-
rect to the guest kernel.

Note that system call redirection is only a spe-
cial case of a more general problem: Actually
there is a conflict between usage of gate descrip-
tors on the guest and the host. As soon as guest
and host are using the same descriptors we have
to distinguish references to these descriptors by
the guest from references by the FAUmachine
simulator itself. In case of FAUmachine running
on a Linux host we have to take care for the in-
terrupt descriptor 128 ($0x80).

We came up with two solution for this prob-
lem: The first one uses the ptrace(2) de-
bugging facility of Linux, the second one is a
modification of the Linux kernel which provides
a more efficient mechanism than ptrace(2).
The next section discusses the first approach us-
ing ptrace(2) and section 3.4 introduces the
second solution.

3.3 Redirection using ptrace(2)

To make clear how we use ptrace(2) we give
a short summary of its functionality. Then we
describe in the sections 3.3.2 and 3.3.3 how we
redirect system calls with ptrace(2). We

conclude in section 3.3.4 with a short discussion
of the overhead of this technique.

3.3.1 Synopsis of ptrace(2)

The ptrace(2) system call provides mecha-
nisms for controlling and tracing the execution
of a child process by its parent. It is used by de-
bugging tools like strace(1).

The child can explicitly request to be traced by
specifying the request PTRACE TRACEME as ar-
gument for ptrace(2). Alternatively, the par-
ent can use PTRACE ATTACH to initiate tracing
of an already existing process.

When traced, the kernel stops the child each
time a signal is delivered. The parent – in the
following called “tracer” – is notified on its next
wait(2) system call and has several possibil-
ities to manipulate the child. With the request
PTRACE PEEKDATA and PTRACE POKEDATA
the parent can read and modify data in the child’s
address space. The parent can also examine
and modify the child’s registers with the requests
PTRACE GETREGS and PTRACE SETREGS.

There are three possibilities to resume the
child. First, the tracer sends the request
PTRACE CONT and the child will again be
stopped on receipt of the next signal. Sec-
ond, the parent enables single stepping with
PTRACE SINGLESTEP: The child will only ex-
ecute the next instruction and stops again. And
third, the parent uses PTRACE SYSCALL. Then
child resumes execution and stops automatically
at the next system call attempt or when a signal
is deliverd. On return from a system call to user
space the child is also stopped. Thus the tracer
can examin the child before and after execution
of a system call.

3.3.2 FAUmachine tracer

When using ptrace(2), FAUmachine forks a
tracer process on startup. This tracer process first
forks the CPU process, the core of the simulator,
and then suspends itself using waitpid(2).

The CPU process executes the simulator core
and represents the CPU of the virtual PC. This
means, it is also running the guest’s code. Hav-
ing finished initialization the CPU process issues
a PTRACE TRACEME request to be traced by its
parent, the tracer process. From now on every
signal delivered to the CPU process will stop it
and notify the tracer via waitpid(2). To syn-
chronize with the tracer, the CPU process sends

itself a SIGTRAP to allow the tracer to start trac-
ing of the CPU process.

When the tracer returns from waitpid(2),
it resumes the child with the PTRACE SYSCALL
request. From now on tracer and CPU process
are synchronized, i.e. any signal delivered to the
child or any system call attempted by the child
will stop it and notify the tracer.

3.3.3 Redirection with ptrace(2)

As soon as the child attempts a system call,
it is stopped and the tracer is notified. The
tracer retrieves the registers of the child with
PTRACE GETREGS and examines the current
instruction pointer, which points to the int
$0x80 instruction generating the system call
software interrupt. As the simulator code resides
at a well known virtual memory area, the tracer
is able to distinguish a system call attempted by
the guest from one by the simulator by looking
at the EIP.

The procedure to deal with a system call at-
tempt by the simulator is easy as it does not need
to be redirected. The tracer just resumes the child
with PTRACE SYSCALL, which continues exe-
cution of the system call in the host kernel. On
return from the system call it is again stopped
and resumed by the tracer. So the simulator code
of the child can issue regular system calls which
are served by the host kernel.

If the software interrupt has been generated by
code of the guest, then the tracer has to redirect
this system call to the guest kernel. This proce-
dure is more complicated. The child has already
trapped into the host kernel and the initiated sys-
tem call cycle must be completed. But there is no
valid context for a system call from the guest to
the host – from the guest’s point of view it even
might not be a system call at all.

However from the host’s point of view this is a
system call attempt and we have to finish it with-
out causing further side effects. To accomplish
this, the tracer modifies the number of the re-
quested system call. This number is stored in the
EAX register of the caller. The tracer saves the
original value of EAX and sets it to the value of
the getpid(2) system call, which has no side
effects as it just returns the current process num-
ber. Then the child continues and finishes the
getpid(2) system call and is stopped again on
return to user space.

The again notified tracer restores the EAX reg-
isters of the child process with the original values

and continues the child with a SIGINT. Upon re-
sumption, the child enters the signal handler of
the hardware simulator which will arrange for
the child to return to the guest’s system call han-
dler. This procedure is outlined in 3.5.

3.3.4 Tradeoff

System call redirection based on ptrace(2)
is expensive. It involves four context switches
between tracer and CPU process, several system
calls issued by the parent (ptrace(2) requests
to examine and modify registers of the CPU pro-
cess) and a system call to the host kernel by the
child just to consume the initiated software inter-
rupt cycle.

Each system call attempted by the simulator
code also involves four process switches and one
system call to examine the child’s registers.

3.4 Kernel redirection

This section describes our approach for a more
generic redirection mechanism implemented in
the host kernel. This mechanism can be used to
easily redirect system calls with low overhead.
In the next section we discuss our design deci-
sions, in 3.4.2 we introduce the implementation
and conclude with an overview of how FAUma-
chine uses this mechanism.

3.4.1 Design decisions

In the context of FAUmachine this mechanism
has to meet the following requirements: First,
system calls from the hardware simulator must
be handled as usual by the host kernel, whereas
system calls from outside the simulator – i.e.
from the guest – need to be redirected. And sec-
ond, the host kernel has to generate a signal to
notify the process about the system call attempt.

The first requirement is necessary, as both the
simulator and the guest are part of the same pro-
cess and address space. Therefore our redirec-
tion mechanism has to split the user portion of
the virtual address space in two distinct areas:
One where system calls are served as usual and
one where system calls are redirected. Thus we
have to provide the host kernel with the address
range in which the simulator code resides. This
is similar to our approach using ptrace(2)
where the tracer knows the simulators address
range.

Using signals to notify the process about a
system call attempt is quite natural, as the sig-
nal handling facility provides all the necessary
means to do the actual redirection: The signal
handler has full control of the interrupted process
and can arrange for the process to continue on
sigreturn(2) in the guest kernel (see 3.5).
We decided to deliver the signal SIGINT.

There is no difference for the simulator be-
tween handling redirection done by the kernel or
by the tracer. The simulator can use both mech-
anisms transparently and can run on both vanilla
and patched hosts.

Note that there are only two traps into the
host kernel involved: First, the system call at-
tempted by the guest system and second the
sigreturn(2) system call of the signal han-
dler. There is no need anymore to switch to an-
other process like the tracer from section 3.3.

To parametrize and control the redirection
mechanism we decided to add a new system call,
called sys faumachine helper().

3.4.2 Kernel Implementation

This section describes the implementation of the
kernel redirection mechanism. The code was
originally written for 2.4 kernels but is now also
running on 2.6 kernels. The redirection code for
2.4 differs only marginally from the 2.6 code.
This paper focuses on the code for 2.6.

The code is split in two parts, a machine de-
pendent and a machine independent part. The
machine dependent code for i386 resides in
arch/i386/kernel/faum.c, the machine
independent in kernel/faumachine.c re-
spectively. We also modified arch/i386/-
kernel/entry.S to add the new system
call and to alter the system call entry function
system call(). A context diff between the
original and modified kernel is about 230 lines,
not counting debugging code and experimental
features.

The modified Linux kernel provides a new
system call to control and parametrize the redi-
rection mechanism:
int sys_faumachine_helper(int request, unsigned long lower,

unsigned long upper, unsigned long level)

The argument int request chooses the
actual function to be used, as the system call also
provides a debugging facility and other experi-
mental features that we will not discuss further.

For system call redirection only the re-
quest REGISTER is relevant. When issued,

the parameters unsigned long lower and
unsigned long upper specify the ad-
dress range from where system calls are al-
lowed. When the parameter unsigned long
level is set to 1 the redirection mechanism
is enabled. The request REGISTER is handled
by the function register faumachine()
in kernel/faumachine.c.

To remember this address range we have
added two variables unsigned long
lower and upper to the task structure
struct task struct (see include/-
linux/sched.h). To monitor whether
redirection is enabled or not we added a new
ptrace(2) flag, PT TRACE SIM, which is
also set by faumachine register().

The handler specified by the descriptor for the
software interrupt 128 is the function system -
call() in arch/i386/kernel/entry.S.
On any system call attempt the flow of execution
moves from userspace directly to system -
call(). This function examines the system call
number provided in the register EAX and calls
the actual function implementing the system call.
There are also checks, whether the current pro-
cess is traced by another one. In this case, the
system call is stopped and a signal is delivered to
the traceing process. We hooked our redirection
mechanism into system call().

The modifications to system call() are
simple. Similar to the already present checks for
ptrace(2) being enabled we now check for
PT TRACE SIM. This additional check imposes
a small but negligible overhead on each system
call, even when redirection is disabled. See sec-
tion 4.1 for a discussion of this overhead.

When PT TRACE SIM is not set, we just con-
tinue with the system call. Otherwise, we call
test faumachine boundary() in ker-
nel/faumachine.c. This function checks
whether the current instruction pointer is outside
the range specified in struct task struct.
If yes, a SIGINT is delivered by calling send -
sig() and the system call is aborted. The sig-
nal handler of the FAUmachine simulator will
catch the SIGINT and proceed as described in
3.5. When the EIP is inside this range, the sys-
tem call continues as usual.

This mechanism reduces the cost of system
call redirection significantly. Redirecting a sys-
tem call is now about as expensive as delivering
a signal. For a performance comparison with the
ptrace(2) approach see section 4.1.

3.4.3 Userland implementation

In this section we delineate how FAUmachine
uses the kernel redirection mechanism.

On startup FAUmachine tries to execute the
sys faumachine helper() system call. If
this fails – the call returns with the value
ENOSYS – FAUmachine uses ptrace(2) (see
3.3). Otherwise FAUmachine forks the CPU pro-
cess directly without prior forking a tracer pro-
cess. During the initialization phase the CPU
process enables the system call redirection.

There is also a command line option to choose
explicitly between the ptrace(2) and kernel
redirection.

3.5 How the simulator handles
redirection

This section describes how the FAUmachine
simulator handles the redirection to the guest.
The procedure described is common to both
mechanisms, ptrace(2) and kernel redirec-
tion.

The simulator handles signals generate by ex-
ceptions – SIGFPE, SIGSEGV, SIGILL, SIG-
BUS – in the function sigexception() (in
node-pc/simulator/cpu core.c). The
trap number is retrieved from the struct
ucontext1 which is passed to the signal
handler by the host kernel. The simulator
keeps the state of the guest’s CPU in the
struct cpu and the trap number is saved in
cpu->f trapno and the cpu->f type is set
to CPU FAULT EXCEPTION to indicate an ex-
ception.

The SIGINT delivered by the redirection
mechanism is also handled by sigexcep-
tion(). As it was not caused by a real pro-
cessor exception we get no useful trap num-
ber. Thus we set struct cpu->f trapno
to $0x80 and cpu->f type to CPU FAULT -
SYSCALL to indicate a software interrupt.

In case of a valid exception, sigex-
ception() calls cpu core call excep-
tion(). This functions retrieves the appropri-
ate descriptor from the guest’s GDT, LDT or IDT
and derives the virtual address of the handler
function. Then it adjusts the EIP and EFLAGS
registers and segment selectors that are stored on
the signal stack.

1The struct ucontext describes the whole state of
the processor at the time the signal was generated. See
/usr/include/sys/ucontext.h for details.

machine time

real machine 141s

tracer and JIT 1547s

kernel redirection and JIT 635s

tracer without JIT 1439s

kernel redirection without JIT 514s

Table 1: Time for kernel compilation

On return from the signal handler the modi-
fied registers and segments are loaded to the CPU
which resumes execution in the specific handler
function.

4 Performance benchmark

In this section we compare the performance of
FAUmachine using ptrace(2)with FAUma-
chine using the kernel redirection. We also mea-
sured the overhead introduced by system call
redirection and the JIT.

4.1 FAUmachine speedup

As benchmark, we use the compilation of a
Linux kernel from source. It involves computing,
disk I/O and memory usage and therefore gives
a good estimate for the performance of a ma-
chine. We used an AMD Athlon XP 2100+ with
1 GByte of memory as host machine and com-
piled the sources of the Linux 2.4.18 kernel. For
each measurement we extracted the source tree
and performed the following commands: “make
oldconfig” and “make dep” to prepare the
compilation and then “make bzImage” to ac-
tually compile the kernel. We measured the du-
ration of “make bzImage.”

We applied this benchmark to five different
targets: First to the host itself to get the per-
formance of the real machine. Then second on
FAUmachine using the tracer and JIT enabled,
third on FAUmachine using the kernel redirec-
tion and JIT enabled, fourth FAUmachine using
the tracer and JIT disabled and finally FAUma-
chine using kernel redirection and JIT disabled.
The results are shown in table 1.

When not using the JIT, the kernel redirection
improves the performance significantly: Com-
pared to the real machine, FAUmachine is only
about 3.6 times slower, whereas the tracer is
about 10.2 times slower. Thus modifying the
host kernel is a sensible approach which in-
creases the performance of FAUmachine about

kernel time

patched 139.50s

vanilla 139.41s

Table 2: Kernel redirection overhead

the factor 2.8. When using the JIT, the overall
performance is degraded, but kernel redirection
increases the performance about factor 2.4.

4.2 Redirection overhead

As discussed in section 3.4.2, the redirection
mechanism imposes a overhead for each system
call even on processes, that do not use kernel
redirection. To measure this overhead we used
the same benchmark as in section 4.1 and ran
it on a real machine with a vanilla Linux ker-
nel and a patched kernel with redirection support.
Again we used an AMD Athlon XP 2100+ with
1 GByte of memory.

As one can see in table 2, the patched ker-
nel is only slightly slower than the vanilla ker-
nel. At least with regard to our simple bench-
mark the overhead imposed by system call redi-
rection seems to be negligible.

4.3 JIT overhead

Using the JIT instead of a pre-modified guest
kernel imposes a performance overhead for the
kernel code of the guest system as it has to be
analyzed and modified. The compiled code is
slower than the original as it contains more in-
structions and is spread over more pages, hurt-
ing processor cache performance. The effect on
performance can be seen in table 1: the JIT ver-
sion is about 14% to 24% slower, depending on
the system call redirection method used. The
cause for this dependency between compilation
method and system call redirection method is not
yet fully identified.

5 Current research

One topic of our current research is the use of the
full 4 GByte address space for FAUmachine. As
long as the code segment of a Linux kernel run-
ning on the virtual machine does not overlap with
the segment of the hosting kernel, Linux can run
on top of Linux easily. When they overlap, the
virtual machine has to simulate not only special
instructions, but also all instructions referencing

that overlapping segment. This has a huge per-
formance impact. To get rid of this limitation,
we are working on an enhanced version of the
existing 4-GByte-patch, which will allow us to
make use of the full 4 GByte address space.

6 Conclusion

We have presented details of two new techniques
used in the FAUmachine virtual machine. We
showed how arbitrary kernel code can be trans-
formed into code suitable for direct execution by
the simulator using a just-in-time compiler. This
allows us to run a large number of operating sys-
tems in our virtual machine. We can already run
the majority of Linux and OpenBSD systems in-
side FAUmachine. We are currently still working
on improving the compatibility of the simulator
to the real hardware, in order to run other oper-
ating systems like Windows. In order to increase
performance, we created a small patch for the op-
erating system kernel of the host machine. The
modification allows to redirect system calls ef-
ficiently and is used by the simulator to detect
systems calls issued by the guest system. The
performance impact of both methods on the vir-
tual machine has been evaluated.

References

[1] K. Buchacker, Mario Dal Cin, H.-J. Höxer,
R. Karch, V. Sieh, and O. Tschäche. Repro-
ducible dependability benchmarking exper-
iments based on unambiguous benchmark
setup descriptions. In Proceedings of the In-
ternational Conference on Dependable Sys-
tems and Networks, pages 469–478, 2003.

[2] Intel Corporation. Intel architecture software
developer’s manual (volume 3: System pro-
gramming guide), 1999.

[3] H.-J. Höxer, K. Buchacker, and V. Sieh. Im-
plementing a user mode linux with minimal
changes from original kernel. In J. Topf, ed-
itor, 9th International Linux System Technol-
ogy Conference, Köln, Germany, September
4-6, 2002, pages 71–82, 2002.

[4] H.-J. Höxer, K. Buchacker, and V. Sieh.
UMLinux - a tool for testing a linux system’s
fault tolerance. In LinuxTag 2002, Karl-
sruhe, Germany, June 6-9, 2002.

[5] McKee and A. Bret. System and method
for monitoring execution of privileged in-
structions. U.S. Patent 6,694,457, Hewlett-
Packard Development Company, March 6,
2001.

